Numerical Optimization using PETSc/TAO

Alp Dener, Todd Munson, Hong Zhang

1l

W Massachusetts = S8 USC University of
& T =2 ®@Rensselaer @ SMU FRGRaho.

PDE-Constrained Optimization

min f(u,v)
subject to g(u,v) =0 yigEe e
c(u,v) >0

= g: state equations
* discretization of partial differential equation given design

= ¢: constraints
* includes constraints on both the state and design

PDE-Constrained Optimization Applications

= Applications include
e Inverse problems
* Parameter estimation
» Design optimization
= Several packages available
* Toolkit for Advanced Optimization (PETSc/TAO)
* Rapid Optimization Library (ROL)

Outline
e

= Bound-constrained optimization methods
* Best method to apply is problem dependent
—TAO provides many choices for nonlinear problems
* Generally, use second derivatives for best performance
« MFEM can easily be used for optimization problems
= Dynamic optimization problems using adjoints

The Obstacle Problem

minimize / |Vu|?da
“ Q

subject to u(x) > ¢(z)Vz € Q
u(z) =0V z € d

o

TAO Bound-Constrained Algorithms

min VW) l's + 5T HFs
subject to 2 4+s>0

= Approximate the objective function

e Quasi-Newton (-tao_type bgnls) uses
approximation

* Newton-Krylov (-tao_type bnls) uses Hessian
" Approximate the set of active bounds
= Solving a linear system of equations for direction
. Ensure global convergence

e Line search

e Trust region

PETSc/TAO: Quasi-Newton Methods (bgnls)

102 bound problems

= Multiple limited-memory QN
approximations implemented as

PETSc Mat objects
= Relative performances compared
on full set of bound constrained

CUTEst problems

= TAO QN algorithms can
seamlessly change methods

ratio of problems solved

— banis/bfgs
—— banis/dfp
—— banis/symbrdn
— bgnkis/sr1

ratio of iterations

PETSc/TAO: Newton-Krylov Methods (bnls)

= Globalization strategy makes very little difference

102 bound problems
1.0

o o o
S o =]
L

ratio of problems solved

o
N

— bnlsficc —— bntljicc
—— bntr/icc

0.0

T T
10° 10t 102
ratio of KSP iterations

N
FASTMATH

Effect of Second-Order Information

= NK outperforms QN in both nonlinear iterations and
function/gradient/Hessian evaluations

10 102 bound problems 10 102 bound problems
—— bnis/icc
¥ —— banls/bfgs_diag
ﬁ—J "
!
08 o 08 I
ra i
206 J [I -
s N l T
g B E |~
3 — 3 M
204 7 / 204
02 02
—— bnlis/icc
—— banls/bfgs_diag
00 00
10° 10! 102 10°
ratio of iterations ratio of (f + 2fg + 2g + 3H)

L
FASTMATH

The Obstacle Problem: MFEM-TAO Integration

minimize / \Vu|?dzx = Newton-Krylov
v Q method
subject to u(z) > ¢(x) Vz €« QObjective, gradient
u(z) =0V z ed and Hessian
evaluations through

FEM

_

N
FASTMATH

The Obstacle Problem: Quasi-Newton Solution

= QN solution converges in 292 iterations

= A lot of computational effort is spent making small
changes near the obstacle

Transition to the Hands On Lesson
e

https://xsdk-
project.github.io/ATPESC2018HandsOnLessons/lessons/obstacle tao/

N
FASTMATH

https://xsdk-project.github.io/ATPESC2018HandsOnLessons/lessons/obstacle_tao/

Adjoints are key ingredients in PDE-constrained optimization

Research interests have been shifting beyond modelling and simulation of a physical system to

outer-loop applications such as PDE-constrained optimization, optimal design and control,
uncertainty quantification etc.

Solving optimization problems often requires to compute derivatives of a functional, which can be
computed efficiently with adjoints.

TR -

—
FASTMATH

What is PDE-constrained optimization?

Goal
Solve the discrete optimization problem

minimize J (u, p)

pou
subjectto c(u,p,t) =0 (PDE constraint)
g(u,p) =0 (equality constraints)
h(u,p) <0 (inequality constraints)

where
@ 7 is the objective functional
@ c represents the discretized PDE equation
@ u € R™ is the PDE solution state
@ p € R™ is the parameters
Because the dimension of « can be really high, a reduced formulation is often used.

—
FASTMATH

An example: data assimilation

The objective function of data AU
assimilation is

I (u(wo), u8) = 3 1Qu—dl + 5 L6 — ub)||

observation error background error

[state variable y, control or design TS
variable v, data d new initial: o

oy U
[0 Q is observation operator condition :
O L is cost functional for design
O «is tradeoff between cost of design >
and fitting data time

@ Physical interpretation: Determine the optimal initial conditions for a numerical model that
minimizes the difference between the forecast and the observations

@ A regulization term is often added to the cost functional to ensure existence and uniqueness
@ Gradient-based optimization algorithms require local derivatives (sensitivities)

N

MATH

Computing sensitivities: finite differences

p: +Ap

@ Easy to implement
@ Inefficient for many parameter case, due to one-at-a-time

@ Possible to perturb multiple parameters simultaneously by
using graph coloring

@ Error depends on the perturbation value Ap

J+AJ | &

Error

dj
dp;

otal Err

Trupc€ation Error
Roundof\Error

\

Ap

Computing sensitivities: automatic differentiation

automatic differentiation

f@{. -k
@ AD can evaluate the sensitivities for an
arbitrary sequence of computer codes
ieps . human
o Difficulties of low-level AD programmer
> pointers
» dynamic memory
» directives
» function calls from external libraries G I L L T Ly Ty ——
» iterative processes (e.g. Newton iteration) symbolic differentiation
» non-smooth problems (human/computer)

—
FASTMATH

N
Forward and adjoint sensitivity analysis (SA) approaches

We compute the gradients by differentiating the time stepping algorithm, e.g. backward Euler
(yn+1 = Yn + hf(tn+1, yn+1))

Sl,n+l - Sé‘.n +h fy(tn,+lvy'n+l)sé,n+1

Forward SA

tn+1

O O O O

[e]
[e]
o

Adjoint SA

An =)\n,+1 + hfy (tn+17 Z/n+l)T An

Forward
Best to use when # of parameters << # functionals # of parameters >> # of functionals
Complexity O (# of parameters) O (# of functionals)
Checkpointing No Yes
_ Implementation Medium High
~ Accuracy High High

FASI ;

Adjoint integration with PETSc

@ PETSc: open-source numerical library for large-scale
parallel computation
https://www.mcs.anl.gov/petsc/

@ ~ 200,000 yearly downloads
@ Portability

>
>
>
>
>

>

32/64 bit, real/complex
single/double/quad precision
tightly/loosely coupled architectures
Unix, Linux, MacOS, Windows

C, C++, Fortran, Python, MATLAB
GPGPUs and support for threads

@ Extensibility

>

ParMetis, SuperLU, SuperLU_Dist, MUMPS, HYPRE,

UMFPACK, Sundials, Elemental, Scalapack, UMFPack...

@ Toolkit

>

>
>
>
>

|

sequential and parallel vectors

sequential and parallel matrices (AlJ, BAIJ...)
iterative solvers and preconditioners

parallel nonlinear solvers

adaptive time stepping (ODE and DAE) solvers

—
FASTMATH

Full software stack

New feature

https://www.mcs.anl.gov/petsc/

S
Other software for adjoints and related functionality

Also available in:
@ SUNDIALS
@ Trilinos

This presentation focuses on experiences in PETSc.

—
FASTMATH

20

.
TSAdjoint Interfaces are smilar to TS interfaces
@ Designed to reuse functionalities (implemented in PETSc or provided by users)
@ Aim for general-purpose solutions
@ Support both explicit and implicit methods and timestep adaptivity
@ Allow multiple cost functionals

parameters
input
TSAdjointSolve

TSTrajectoryGet

TSSolve

TSTrajectorySet

{ TSEvent \ { TSAdjointEvent j
TSStep : : TSAdjointStep
' TSMonitor] W TsAdointMonitor [

TSAdapt

—
FASTMATH

21

Optimal checkpointing for given storage allocation

@ Minimize the number of recomputations and the number of reads/writes by using the revolve
library of Griewank and Walther

> Revolve is designed as a top-level controller for time stepping
» TSTrajectory consults revolve about when to store/restore/recompute

@ Incorporate a variety of single-level and two-level schemes for offline and online checkpointing

» existing algorithms work great for RAM only checkpointing
> optimal extension for RAM+disk (work in progress)

An optimal schedule given 3 allowable checkpoints in RAM:
blue arrow: store a

checkpoint)
red arrow: restore a .
checkpoint @_,

black arrow: a step

A e I

—
FASTMATH P

Validating Jacobian and sensitivity is critical for optimization

@ PETSc and TAO (optimization component in PETSc) can test hand-coded Jacobian and
gradients against finite difference approximations on the fly

@ Jacobian test: —snes_test_jacobian

lifference 1.0¢
lifference 1.
lifference 1.3005

@ -snes_test_jacobian_view and -tao_test_gradient_view can show the differences
element-wisely

@ Nonlinear solve is not very sensitive to the accuracy of Jacobian, but adjoint solve needs
accurate Jacobian

S
MATH

23

Solving dynamic constrained optimization

Discretize
(__pE_) ODE (__Residual) (_Jacobians)
l Approximated :
if not provided 4
TAO PETSc
(Objecti D) I TS solver |
‘—(Gradient)«H TS adjoint solver ‘
R R Numerical linear
algebra
Workflow for PDE-constrained optimization
Set up TAO: Set up ODE solver and adjoint solver:
@ Initial values for the variable vector @ ODE right-hand-side function and Jacobian
@ Variable bounds for bounded optimization @ Additional Jacobian w.r.t parameters if

gradients to the parameters are desired.
@ ODE Initial condition

@ Hessian matrix for Newton methods (optional) ° I::ir:llc:;:ls)C?or:'dtlrtggsdj(:)?*ttl?/la\:?ailtj)?essfor adjoint

S
MATH

@ Objective function
@ Gradient function

24

Hands-on: an inverse initial value problem
minimize [|U(t) — U (ts)l2
0

subject to ‘fi—‘t‘ = D1V?u—uv’ + (1 —u)

le% = DoVPv 4 uv’ — (7 + k)v

where U = [u; v] is the PDE solution vector, Us is the initial condition. The reaction and diffusion of

two interacting species can produce spatial patterns over time.

9.96e-01

9.96e-01

o
0.008400 9.960-01

X
0.002+00 9.96e-01

o
0002400 9.96e-01

(a) t=0 sec (b) t=100 sec (c) t=200 sec

Interpretation Given the pattern at the final time, can we find the initial pattern?

__Link to Hands-on Lesson
FASTMATH https://xsdk-project.github.io/ATPESC2018HandsOnLessons/lessons/adjoint

o5

https://xsdk-project.github.io/ATPESC2018HandsOnLessons/lessons/adjoint

Tips and advice

@ Jacobian can be efficiently approximated using finite difference with coloring
(-snes_fd_coloring); particularly convenient via DMDA

@ Most of the difficulties stem from mistakes in the hand-coded Jacobian function; make
sure to validate it carefully

@ Use direct solvers such as SuperLU and MUMPS for best accuracy (but not
scalability) of the gradients

@ Use -tao_monitor —ts_monitor —-ts_adjoint_monitor —snes_monitor
-log_view for monitoring the solver behavior and profiling the performance

@ -malloc_hbw allows us to do the computation using MCDRAM and checkpointing
using DRAM on Intel’s Knights Landing processors (Argonne’s Theta, NERSC’s Cori)

@ Check the user manual and the website for more information, and ask questions on
the mailing lists

26

https://www.mcs.anl.gov/petsc/

Takeaways

PETSc and TAO help you rapidly develop parallel code for dynamic constrained optimization

Adjoint as an enabling technology for optimization

PETSc offers discrete adjoint solvers that take advantage of highly developed PETSc
infrastructure: MPI, parallel vectors, domain decomposition, linear/nonlinear solvers

Requires minimal user input, and reuses information provided for the forward simulation

Advanced checkpointing, transparent to the user

Validation for Jacobian and gradients using finite differences

—
FASTMATH

27

Thank you!

